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Bernoulli Regression Models: 


Re-examining Statistical Models with Binary Dependent Variables 


Abstract 


The classical approach for specifying statistical models with binary dependent variables 

in econometrics using latent variables or threshold models can leave the model 

misspecified, resulting in biased and inconsistent estimates as well as erroneous 

inferences. Furthermore, methods for trying to alleviate such problems, such as univariate 

generalized linear models, have not provided an adequate alternative for ensuring the 

statistical adequacy of such models. The purpose of this paper is to re-examine the 

underlying probabilistic foundations of statistical models with binary dependent variables 

using the probabilistic reduction approach to provide an alternative approach for model 

specification. This re-examination leads to the development of the Bernoulli Regression 

Model. Simulated and empirical examples provide evidence that the Bernoulli Regression 

Model can provide a superior approach for specifying statistically adequate models for 

dichotomous choice processes. 

Keywords: Bernoulli Regression Model, logistic regression, generalized linear models, 

discrete choice, probabilistic reduction approach, model specification 
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Bernoulli Regression Models:  


Re-examining Statistical Models with Binary Dependent Variables 


1. Introduction 

The evolution of conditional statistical models with binary dependent variables 

has led to two interrelated approaches on how to specify these models. Powers and Xie 

(2000) refer to these two approaches as the latent variable or theoretical approach and the 

transformational or statistical approach. The latent variable approach assumes the 

existence of an underlying continuous latent or unobservable stochastic process giving 

rise to the dichotomous choice process being observed. The transformational approach 

views the observed dichotomous choice process as inherently categorical and uses 

transformations of the observed data to derive an operational statistical model (Powers 

and Xie, 2000). 

The latent variable approach assumes the existence of a latent stochastic process 

* *{ i | X i = x i , i = 1,..., N}, where Yi = g(X i ;θ )+ ε i , the functional form of g .;.Y ( ) is 

derived from theory, X i  is a k-dimensional vector of explanatory (random) variables, θ 

*is a set of estimable parameters, ε i is IID and E(ε i ) = 0 (Maddala, 1983). Given that Yi 

is not directly observable, what is observed is another variable, Yi , related to Yi 
* , such 

*that Yi = 1(Yi > λ), for some λ ∈R , where 1(.)  is the indicator function. A statistical 

model is then specified based on the following probabilistic framework:  

*P(Yi = 1) = P(Yi > λ)= P(g(X i ;θ )+ ε i > λ) = F (g(X i ;θ )− λ) , 
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where F ( ).  is the cumulative density function (cdf) of ε i  and assumed to be symmetric.1 

If ε i  is distributed IID extreme value, then F (.)  is the logistic cdf, and if ε i  is IID 

normal, then F ( ).  is the normal cdf, giving rise to the binary logistic and probit 

regression models, respectively (Train, 2003). Given that the underlying latent process 

used to specify the model is unobservable, the assumptions concerning the distribution of 

ε i  and the functional form of g(X i ;θ )  cannot be directly verified. If these assumptions 

are wrong, then the estimable model obtained is misspecified and the parameter estimates 

inconsistent (Coslett, 1983). 

The transformational approach follows the theory of univariate generalized linear 

models developed by Nelder and Wedderburn (1972), except these models arise from 

conditional rather than marginal distributions.  Following Fahrmeir and Tutz (1994), let 

{Yi | X i = x i , i = 1,..., N} be an independent stochastic process, such that 

Yi | X i = x i ~ bin( pi ,1) . Now consider the linear predictor η i = β ′t(x i ) , where t( )x i is a 

(S ×1)  vector of transformations of x i and β  is a (S ×1)  vector of parameters. It is 

assumed that the linear predictor is related to pi  via the inverse of a known one-to-one, 

sufficiently smooth response function, i.e. η i = l(pi ) , where l(.) is referred to as the link 

function. Hence, the transformational approach attempts to specify a transformation or 

functional form for the link function to obtain an operational statistical model. If l( ).  is 

the logistic (probit) transformation, then this approach gives rise to the traditional binary 

logistic (probit) regression model. In fact, the inverse of any one-to-one, sufficiently 

1 When F ( ).  is symmetric: 

P(g(X i ;θ )+ ε i > λ) = P(ε i > λ − g(X i ;θ )) =1− F (λ − g(X i ;θ )) = F (g(X i ;θ )− λ) . 
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smooth cdf could provide a proper model under this approach. Kay and Little (1987) but 

−1the functional form of pi = l ( )η = g(η)  is in fact determined by the probabilistic 

structure of the observed data. That is, the functional form of pi = E(Yi | X i = x i ) is  

dependent upon the functional form of f (Yi | X i = x i ) and can be specified using 

f (X i | Yi = j) for j = 0,1 (see also Arnold and Press, 1989). Again the wrong choice of 

l( ).  or η  will leave the model misspecified and the parameter estimates inconsistent. 

In an attempt to deal with these functional form issues, the purpose of this paper is 

to re-examine the underlying probabilistic foundations of conditional statistical models 

with binary dependent variables using the probabilistic reduction approach developed by 

Spanos (1986,1995,1999). This examination leads to a formal presentation of the 

Bernoulli Regression Model (BRM), a family of statistical models, which includes the 

binary logistic regression model. This paper provides a more complete extension of the 

work done by Kay and Little (1987). Other issues addressed include, specification and 

estimation of the model, as well as, using the BRM for simulation. 

2. The Probabilistic Reduction Approach and Bernoulli Regression Model 

The probabilistic reduction approach is based on re-interpreting the De Finetti 

representation theorem as a formal way of reducing the joint distribution of all observable 

random variables involved into simplified products of distributions by imposing certain 

probabilistic assumptions (Spanos, 1999). This decomposition provides a formal and 

intuitive mechanism for constructing statistical models, with the added benefit of 

identifying the underlying probabilistic assumptions of the statistical model being 

examined.  
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A statistical model is defined as a set of probabilistic assumptions that adequately 

capture the systematic information in the observed data in a parsimonious and efficient 

way. The primary goal of the probabilistic reduction approach is to obtain statistically 

adequate models, where the “adequacy of a statistical model is judged by the 

appropriateness of the [probabilistic] assumptions (making up the model) in capturing the 

systematic information in the observed data (Spanos, 1999; p.544).”  

Let {Yi , i = 1,..., N}  be a stochastic process defined on the probability space 

(S , ℑ, P( ). ) , where Yi ~ bin( p,1) (Bernoulli), E(Yi ) = p and Var(Yi ) = p(1− p) for 

i = 1,..., N . Furthermore, let {X i = (X 1,i ,..., X K ,i ), i = 1,..., N} be a vector stochastic process 

defined on the same probability space with joint density function f (X;ψ 2 ), where ψ 2 is 

2an appropriate set of parameters. Furthermore, assume that E(X k ,i )< ∞ for k = 1,..., K 

and i = 1,..., N , making {Yi , i = 1,..., N} and each {Xk ,i , i = 1,..., N}, k = 1,..., K , elements 

of L2 (R N ), the space of all square integrable stochastic processes over R N . The joint 

density function of the joint vector stochastic process {(Yi , X i ), i = 1,..., N}  takes the form:  

f (Y1 ,...,YN , X1 ,..., X N ;φ) , (1) 

where φ  is an appropriate set of parameters. 

All of the systematic (and probabilistic) information contained in the vector 

stochastic process {(Yi , X i ), i = 1,..., N}  is captured by the Haavelmo Distribution, which 

is represented by the joint density function given by equation (1). Based on a weaker 

version of De Finetti’s representation theorem, by specifying a set of reduction 

assumptions from three broad categories: 

(D) Distributional, (M) Memory/Dependence, and (H) Heterogeneity, 
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concerning the vector stochastic process{(Yi , X i ), i = 1,..., N}, the modeler can reduce the 

Haavelmo distribution or joint density function into an operational form, giving rise to an 

operational statistical model and probabilistic model assumptions. By specifying 

particular reduction assumptions, the modeler is essentially partitioning the space of all 

possible statistical models into a family of operational models (indexed by the parameter 

space) (Spanos, 1999). 

Assuming that the joint vector stochastic process {(Yi , X i ), i = 1,..., N} is 

independent (I) and identically distributed (ID), the joint distribution given by equation 

(1) can be reduced (decomposed) in the following manner: 

I N ID N 

f (Y1 ,...,YN , X1 ,..., X N ;φ) =∏ f i (Yi , X i ;ϕ i )=∏ f (Yi , X i ;ϕ) , (2) 
i=1 i=1 

where ϕ i  and ϕ  are appropriate sets of parameters. The last component of the reduction 

in equation (2) can be further reduced so that: 

IID N N 

f (Y1 ,...,YN , X1 ,..., X N ;φ) =∏ f (Yi , X i ;ϕ) =∏ f (Yi | X i ;ψ 1 )⋅ f (X i ;ψ 2 ) , (3) 
i=1 i=1 

where ψ 1 and ψ 2  are appropriate sets of parameters.  

It is the reduction in (3) that provides us with the means to define an operational 

statistical model with binary dependent variables. For the reduction in equation (3) to 

give rise to a proper statistical model, it is necessary that the joint density function 

f (Yi , X i ;ϕ)  exist. The existence of f (Yi , X i ;ϕ) is dependent upon the compatibility of 

the conditional density functions, f (Yi | X i ;ψ 1 ) and f (X i | Yi ;η1 ) (where η1 is an 

appropriate set of parameters) (Arnold and Castillo, 1999), i.e. 

f (Yi | X i ;ψ 1 )⋅ f (X i ;ψ 2 ) = f (X i | Yi ;η1 )⋅ f (Yi ; p) = f (Yi , X i ;ϕ), (4) 
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where f ( )  Yi ; p = pYi (1− p)1−Yi .

 Arnold et al. (1999;p. 17) state that a sufficient condition for the compatibility of 

f (Yi | X i ;ψ 1 ) and f (X i | Yi ;η1 ) is that the ratio:  

f (Yi = 1 | X i ;ψ 1 )⋅ f (X i | Yi = 0;η1 ) 
f (Yi = 0 | X i ;ψ 1 )  (  ⋅ f X i | Yi = 1;η1 ) 

does not depend on Z i . Thus, using equation (4), the above ratio must be equal to 
1− 

p
p 

, 

implying the following condition must be met:  

f (X i | Yi = 1;η1 ) ⋅ f (Yi = 1; p)
= 

f (Yi = 1 | X i ;ψ 1 ) ⋅ f (X i ;ψ 2 ) . (5)
f (X i | Yi = 0;η1 ) f (Yi = 0; p) f (Yi = 0 | X i ;ψ 1 ) f (X i ;ψ 2 ) 

Assume that f (Yi | X i ;ψ 1 ) is a conditional Bernoulli density function with the 

following functional form: 

f (Yi | X i ;ψ 1 ) = g(X i ;ψ 1 )Yi [1− g(X i ;ψ 1 )]1−Yi , (6) 

1 ) K × 0,1 1 .2where g(X i ;ψ : R Θ1 → [ ] and ψ ∈Θ1 , the parameter space associated with ψ 1 

The density function specified by equation (6) satisfies the usual properties of a density 

function, i.e. following the properties of the Bernoulli density function (see Spanos, 

1999): 

(i) f (Y i| X i ;ψ 1 ) ≥ 0 for Yi = 0,1 and X i = x i ∈R K , 

(ii) ( | X ;ψ = g X ;ψ )+ ( − g(X ; ) = 1∑ f Yi i 1 ) (  i 1 1 i ψ 1 ) , and 
Yi =0,1 

2 This choice of functional form is based upon a similar functional form used by Cox and Wermuth (1992).  

7 



⎧ 0 if a < 0 and b < 0 
⎪1− g(X ;ψ ) if a < 0 and 0 ≤ b < 1 

) (  F a | X = ⎪
⎪ 

( ψ 
i 1 

1and a,b ∈(iii) F (b | X i ;ψ 1 − i ;ψ 1 ) ⎨ g X i ; 1 ) if 0 < a < b ≥ 1, for ( ) R , 
⎪ 1 if a ≤ 0 and b ≥ 1⎪ 
⎩ 0 if a > 1and b > 1⎪ 

where (i) follows from the nonnegativity of g(X i ;ψ 1 ) and F (. | X i ;ψ 1 ) represents the 

cumulative conditional Bernoulli density function, which takes the following functional 

form: 

⎧ 0 for z < 0 
F (z | X i ;ψ 1 ) = 

⎪
⎨1 − g(X i ;ψ 1 ) for 0 ≤ z < 1 . 
⎪ 1 for z ≥ 1⎩ 

Substituting equation (6) into (5) and letting π j = p j (1− p)1− j for j = 0,1 gives: 

f (X i | Yi = 1;η1 ) π1 g(X i ;ψ 1 ) f (X i ;ψ 2 )

f (X i | Yi = 0;η1 )

⋅
π 0 

= 
1− g(X i ;ψ 1 )

⋅ 
f (X i ;ψ 2 )

, (7) 


which implies that: 

1 i i 1g(X i ;ψ 1 ) = π 0 ⋅ f (X i | Y 
π 

i =
⋅ 

0
f 
; 
(
η 
X 

1 )+ 

| Y 
π1 

=
⋅ 
1
f 
;η
(X 
) 
i | Yi = 1;η1 )

. (8) 

Given the general properties of density functions and that π j ∈(0,1) for j = 0,1, the 

1 ) 0,1 X ψ 1 
K × [ ]range of g(X i ;ψ is [ ], justifying the assumption that g( i ; ) : R Θ1 → 0,1 . 

A more intuitive and practical choice for g(X i ;ψ 1 ) can be found by using results 

from Kay and Little (1987). Using the identity f (.) = exp(ln f (.)) and after rearranging 

some terms, g(X i ;ψ 1 )  becomes: 

exp{h(X i ;η1 )} −1g(X i ;ψ 1 ) = 
1+ exp{h(X i ;η1 )} 

= [1 + exp{− h(X i ;η1 )}] , (9) 
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⎜ i i 1 ⎟where h(X i ;η1 ) = ln
⎛
⎜ f

f 
(
( 
X
X 

|
| 
Y
Y = 1

0
;
; 
η
η 
)
)
⎞
⎟ + κ and κ = ln(π1 )− ln(π 0 ) . Written as the 

⎝ i i = 1 ⎠ 

composite function, g(h(X i ;η1 )), g(.)  represents the logistic cumulative density function 

(the transformation function) and h(.;.)  represents the traditional index function. Equation 

(9) illustrates the functional relationship between ψ 1 and η (i.e. ψ 1 = G( ) ), as well.3 
1 η1 

The conditional distribution f (Yi | X i ;ψ 1 ) allows the modeler to define a 

statistical generating mechanism (SGM), which is viewed as an idealized representation 

of the true underlying data generating process (see Spanos, 1999). The SGM is usually 

characterized by a set of conditional moment functions of f (Yi | X i ;ψ 1 ), such as the 

regression function: 

Yi = E(Yi | X i = x i )+ ui ,    (10)  

where E(Yi | X i = x i )  represents the systematic component and ui  the nonsystematic 

component (the error term). The orthogonal decomposition in equation (10) arises when 

{Yi , i = 1,..., N} and {X k ,i , i = 1,..., N}are elements of L2  for k = 1,..., K  (see Small and 

McLeish, 1994 and Spanos, 1999). The SGM can contain higher order conditional 

moment functions when they capture systematic information in the data. These can be 

specified using ui , in the following manner: 

s sui = E(ui | X i = x i )+ vi,s ,    (11)  

3 Note, that in some cases one is able to reparametricize h(x i ;η1 ) , so that 

x ( )  1 ) (  i 1h(x i ;η1 ) = h( i ; G η = h x ;ψ 1 ) . In other cases, ψ =η1  (see section 3 for examples). 

9 



where s denotes the sth order conditional moment function. When s = 2,3 or 4 , equation 

(11) represents the skedastic (conditional variance), clitic (conditional skewness) and 

kurtic (conditional kurtosis) functions, respectively.  

Given that Var(Yi | X i = x i ) < ∞ ,  the stochastic process {Yi | X i = x i , i = 1,..., N} 

can be decomposed orthogonally giving rise to the following regression function: 

Yi = E(Yi | X i = x i )+ ui = g(x i ;ψ 1 )+ ui = [1+ exp{− h(x i ;η1 )}]−1 + ui , (12) 

where the last inequality follows by substituting in equation (9).  The distribution of the 

error term, ui , is given by: 

1− g(X i ;ψ 1 ) − g(X i ;ψ 1 )ui 

( )  g(X i ;ψ 1 ) 1− g(X i ;ψ 1 )f ui 

where ( ) = 0 and Var(u ) = g(X ;ψ )(1− g(X ;ψ )) . If  is discrete then ( ) willE ui i i 1 i 1 X i f ui

be discrete, but if X i  is continuous then f (ui ) will be a multimodal distribution. For 

example, consider the univariate case when X i | Yi = j ~ N (0.6 + 0.6Yi ,1) , then f ui( ) has 

the (simulated) bimodal distribution in Figure 1. 

Equation (12) represents the SGM for a family of statistical models known as the 

Bernoulli Regression Model, which is more formally specified in Table 1.4  The first 

three model assumptions, i.e. distributional, functional form and heteroskedasticity, arise 

from the derivations provided above. The homogeneity and independence assumptions 

are a result of the IID reduction assumptions made about the joint vector stochastic 

process{(Yi , X i ), i = 1,..., N}. 

4 The conditional variance (or skedastic function) and higher order moment functions are not included in 

the SGM because they are specified in terms of the conditional mean, g(x i ;ψ 1 ) 
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The regression function given by equation (12) is similar to the traditional binary 

logistic regression model, but above derivations show that it arises naturally from the 

joint density function given by equation (1), suggesting it as an obvious candidate for 

modeling discrete choice processes when the dependent variable is distributed 

Bernoulli(p). Another important observation is that the functional forms for both 

g(X i ;ψ 1 ) and h(X i ;η1 ) are both dependent upon the functional form of f (X i | Yi ;η1 ) 

and in turn the joint distribution of Yi  and X i . 

3. Model Specification 

Kay and Little (1987) provide the necessary specifications for h(x i ;η1 ) 

when X k ,i , k = 1,..., K  (the explanatory variables) have distributions from the simple 

exponential family and are independent conditional on Yi  of each other. When these 

conditions are not met, the model specification becomes more complex. Kay and Little 

(1987) provide examples involving sets of random variables with multivariate Bernoulli 

and normal distributions, but due to the complexity of dealing with multivariate 

distributions they advocate accounting for any dependence between the explanatory 

variables by including cross-products of transformations (based on their marginal 

distributions) of the explanatory variables. This paper builds on the model specification 

work initiated by Kay and Little (1987). 

An initial issue concerning specification of BRMs is that f (X i | Yi ;η1 )  is not 

usually known and for many cases cannot be readily derived.5 A potential alternative is to 

assume that: 

5 For help with such derivations, work by Arnold, Castillo and Sarabia (1999) may be of assistance. 
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f (X i | Yi ;η1 ) = f (X i ;η1 (Yi )) .    (13)  

In this sense, one is treating the moments of the conditional distribution of X i  given Yi 

as functions of Yi . That is η1 (Yi = j) =η1, j for j = 0,1. Lauritzen and Wermuth (1989) 

use a similar approach to specify conditional Gaussian distributions, and Kay and Little 

(1987) use this approach to specify the logistic regressions models in their paper (see also 

Tate, 1954 and Oklin and Tate, 1961). 

Table 2 provides the functional forms for g(xi ;ψ 1 ) needed to obtain a properly 

specified BRM with one explanatory variable for a number of different conditional 

distributions of the form f (X i ;η1, j ). Following Kay and Little (1987), all of the cases 

examined in Table 2 have index functions that are linear in the parameters. Examples of


conditional distributions that give rise to nonlinear index functions include 


when f (X i ;η1, j )  is distributed F, extreme value or logistic. In such cases, one option is to 


explicitly specify f (X i ;η1, j )  and estimate the model using equation (9), which can be 


difficult numerically due to the inability to reparametricize the model, leaving both η1,0


and η1,1 in h(x i ;η1, j ). Another option is to transform X i  so that it has one of the 


conditional distributions specified in Table 2. To illustrate this latter approach, consider 


the following example. 


Example 1: Let f (X i ;η1, j )  be a conditional Weibull distribution of the form: 


f (X i ;η1 ) =
γ ⋅ X 

γ 
i 
γ −1 

exp⎨
⎪⎧− ⎜

⎛
⎜ X i 

⎟
⎞
⎟
γ 

⎬
⎪⎫ 

, (14)
α j ⎪⎩ ⎝

α j ⎠ ⎪⎭ 
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2where (α j ,γ )∈R + and X i > 0 . That is X i | Yi = j ~ W (α j ,γ ). If X i ~ W (α ,γ ) 

γ γX i α (i.e. exponential). Thus, α j ), and using the resultsthen ~ Exp( ) X i | Yi = j ~ Exp( 

from  Table  2:  

γ − g(xi ;ψ 1 ) = [1+ exp{− β0 − β1 xi }] 1 
, (15) 

⎡ ⎛α 0 ⎞⎤ ⎛ 1 ⎞
γ 

⎛ 1 ⎞
γ 

where β0 = ⎢κ + γ ln⎜⎜ ⎟⎟⎥ and β1 = ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ . 
⎣ ⎝ α1 ⎠⎦ ⎝α 0 ⎠ ⎝α1 ⎠ 

If there is more than one explanatory variable, then a number of different 

approaches exist for model specification. The first approach is to explicitly specify the 

multivariate distribution f (X i ;η1, j ). If f (X i ;η1, j )  is multivariate normal with 

homogenous covariance matrix, then: 

−1 

g(x i ;ψ 1 ) = ⎢
⎡
1+ exp⎜⎛− β0 −∑ 

K 

β k xk ,i ⎟
⎞
⎥
⎤ 

. 
⎣ ⎝ k =1 ⎠⎦ 

On the other hand, if the covariance matrix exhibits heterogeneity (based on Yi ), then: 

−1
⎡ ⎛ K K K ⎞⎤ 

g(x i ;ψ 1 ) = ⎢1+ exp⎜⎜− β0 −∑β k xk ,i −∑∑β j ,l x j ,i xl ,i ⎟⎟⎥ ⎢ k =1 j=1 l≥ j ⎥⎣ ⎝ ⎠⎦ 

(Kay and Little, 1987). Kay and Little (1987) state there are a limited number of other 

multivariate distributions that exist in the literature which would give rise to readily 

estimable and tractable BRMs. Three additional multivariate distributions that do suffice, 

include the binomial, beta and gamma distributions. The following example presents the 

case for a conditional bivariate gamma distribution.  

Example 2: Let f (X 1,i , X 2,i ;η1, j )  be a conditional bivariate gamma distribution, of the 

form: 
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α jθ1, jθ 2, j −α j X 2,i θ1, j −1 θ2, j −1f (X 1,i , X 2,i ;η1, j ) = 
Γ[θ1, j ]  [  Γθ 2, j ]

e X 1,i (X 2,i − X 1,i ) , 

3where Γ[].  is the gamma function, X 2,i > X 1,i ≥ 0 and (α j ,θ1, j ,θ 2, j )∈R + (Spanos, 1999). 

Then: 

g(x1,i , x2,i ;ψ 1 ) = [1+ exp{− β0 − β1 x2,i − β 2 ln(x1,i )− β3 ln(x2,i − x1,i )}]−1 , 

where β0 = ⎢
⎡

⎢
κ + ln⎜

⎛

α
α1θ
θ 

1

1

,

,

1

0 

θ 2,1Γ[θ
θ 

1,0 ]Γ[θ 2

2

,

,

0

1 

]
⎟
⎞
⎥
⎤ 

, β1 = (α 0 −α1 ) , β 2 = (θ1,1 −θ1,0 )  and 
⎣ 

⎜
⎝ 0 θ 2,0 Γ[ ] [  1,1 Γθ ]⎟⎠⎥⎦ 

β3 = (θ 2,1 −θ 2,0 ). 

Another approach for specifying a BRM when K >1 is to decompose f (X i ;η1, j ) 

into a product of simpler conditional density functions. Following Kay and Little (1987), 

consider the case where the explanatory variables are independent of each other 

K 

conditional onYi . Then, f (X i ;η1, j ) =∏ f (X k ,i ;η1,k , j ), making the index function 
k =1 

K 

h(x i ;η1 ) = ∑ ln⎜⎜
⎛ f (X k ,i ;η1,k ,1 )

⎟
⎟
⎞ 
+κ . The results in Table 2 then can be used to 

k =1 ⎝ f (X k ,i ;η1,k ,0 )⎠ 

specify h(x i ,η1 ) by specifying the (sub) index functions, h(xk ,i ;η1,k ) = ln⎜
⎛
⎜ f

f 
(
( 
X
X k ,i 

;
; 
η
η1,k ,1 )

)
⎟
⎞
⎟ , 

⎝ k ,i 1,k ,0 ⎠ 

(without κ ) for each X k ,i . The difficulty here is assessing the conditional independence 

of the explanatory variables given Yi , but results by Tate (1954) and Oklin and Tate 

(1961) may be some help. 

14 



If some or none of the explanatory variables are independent conditional on Yi , 

then another approach for decomposing f (X i ;η1, j ) is sequential conditioning (Spanos, 

1999), i.e. 

f (X ;η ) = f (X ;η ) 
K

f (X | X ,..., X ;ξ ) ,i 1, j 1,i 1,1, j ∏ k ,i k −1,i 1,i k , j

k =2


where ξ k , j  is an appropriate set of parameters. Given the potential complexity of this 

approach, it can be combined with the previous approach to reduce the dimensionality 

and increase the tractability of the problem. To illustrate this alternative, consider the 

following example. 

Example 3: Let 

f (X 1,i , X 2,i , X 3,i ; X 4,i ;η1, j ) = f (X 1,i , X 2,i ;η2, j )⋅ f (X 3,i , X 4,i ;η3, j ), 

where X 1,i and X 2,i are independent conditional on Yi  of X 3,i and X 4,i . Now assume 

that (i) X 1,i given Yi = j is distributed bin(1, ρ j ), (ii) X 2,i given X 1,i = l (l = 0,1) and 

Yi = j is distributed exponential, i.e.: 

f (X 1,i ;ξ1, j ,l ) = 
1 exp⎨

⎪⎧− 
X 1,i 

⎬
⎪⎫ 
,

θ j ,l ⎩⎪ θ j ,l ⎭⎪

and (iii) X 3,i  and X 4,i given Yi = j  are jointly distributed bivariate beta, i.e.: 

f (X 3,i , X 4,i ;η3, j ) = 
⎛
⎜ Γ

(α j +δ j + γ j ) ⎞⎟[X 3
α 
,i 
−1 ⋅ X 4

δ 
,i
j −1 ⋅ (1− X 3,i − X 4,i )γ j −1 ],⎜ Γ( ) (  ) (  )  α Γ δ j Γ γ j 

⎟
j 

⎝ j ⎠ 

where X 3,i ≥ 0 , X 4,i ≥ 0 and X 3,i + X 4,i ≤ 1 for i = 1,..., N ; (α j ,δ j ,γ j ) > 0 for j = 0,1; 

and Γ( ).  is the gamma function (Spanos, 1999). Using these assumptions:  
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f (X 1, j , X 2, j ;η2, j ) = f (X 1, j ;ξ1, j ,l )⋅ f (X 2, j ; ρ j ) 

= 
⎡
⎢
⎢θ
ρ j exp 

⎧
⎨
⎪
⎪
−
θ 

X 1,i ⎫
⎬
⎪
⎪

⎤
⎥
⎥ 

X 2,i ⎡
⎢
⎢

(1 
θ
− ρ j )exp 

⎧
⎨
⎪
⎪
−
θ 

X 1,i ⎫
⎬
⎪
⎪

⎤
⎥
⎥ 

1−X 2,i 

⎣ j ,1 ⎩ j ,1 ⎭⎦ ⎣ j ,0 ⎩ j ,0 ⎭⎦ 

(see Kay and Little, 1987), implying that:  

g(x i ;ψ 1 ) = [1+ exp{− β0 −β1 x1.i − β 2 x2,i − β3 x1,i x2,i − β 4 ln(x3,i )

−1
(  )  − β ln(1− x − x }− β5 ln x4,i 6 3,i 4,i ) ]

where β0 = ⎢
⎡ 

+ ⎜⎜
⎛

(
( 
1
1 
−

− 

ρ
ρ1 )

)
θ
θ 

0,0 

⎟
⎞ 
+ ln( )

⎤ 
, β1 = ⎜

⎛

θ 
1 

−
θ 
1 

⎟
⎞

κ ⎟ λ ⎥ ⎜ ⎟ , 

⎢ 0 1,0 ⎠ ⎥ 0,0 1,0 ⎠
⎣ ⎝ ⎦ ⎝ 

β 2 = 
⎡
⎢ln 

⎛
⎜ ρ1θ0,1 ⎞⎟

⎟ + ln 
⎛
⎜ (1− ρ1 )θ0,0 ⎞⎟

⎤
⎥ , β3 = 

⎛
⎜ 1 

− 
1 

− 
1 

+ 
1 ⎞⎟ , β 4 = α1 −α 0 , 

⎢ ⎜
⎝ ρ0θ1,1 ⎠ 

⎜
⎝ (1− ρ0 )θ1,0 

⎟
⎠⎥ 

⎜
⎝θ0,1 θ1,1 θ0,0 θ1,0 

⎟
⎠⎣ ⎦


Γ(α1 + δ1 + γ 1 )Γ(α 0 )Γ(δ 0 )Γ(γ 0 )
β = δ −δ , β = γ − γ and λ = .5 1 0 6 1 0 ( + δ + γ ) (  ) (  ) (  )δ Γ γΓ α 0 0 0 Γ α1 Γ 1 1 

Kay and Little (1987) provide a number of similar examples involving discrete and 

continuous variables. If the decomposition of f (X i ;η1, j ) involved an unknown 

multivariate distribution conditional on Yi  of continuous variables, then it becomes 

considerably more difficult to derive the specification of g(x i ;ψ 1 ) . Guidelines and 

results presented by Arnold, Castillo and Sarabia (1999) provide a means for attempting 

these specifications, and are beyond the current scope of this paper.  

4.0 Model Estimation 

In order to utilize all of the information present in the distribution of the sample, 

given by equation (1), the method of maximum likelihood should be used to estimate the 

parameters of the BRM (Spanos, 1999). Given the independence of the sample, the log-

likelihood function for the logistic form of the BRM is: 
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N

( ; y x ∑ i g h( i ψ 1 ) (  i ln 1 g h i ψ 1 ) ]ln L ϕ ( , )) = [y ln( ( x ; )) + 1− y ) ( − ( (x ; ) ) , (16) 
i=1 

where g( ).  is the logistic cdf  and h(.,.)  is written as a function of ψ 1 , the parameters of 

interest. Now let ∂h i  denote the gradient of h(x i ;ψ 1 )  with respect to the vector ψ 1 

(e.g. β ), ∂ 2h i  the Hessian, and g ′(.)  the logistic probability density function. Then: 

N∂ ln L(ϕ;(y, x))
= ∑

⎡
⎢
⎛
⎜ yi − g(h(x i ;ψ 1 )) ⎞

⎟g ′(h(x i ;ψ 1 ))∂h i 

⎤
⎥ , and

∂ψ 1 i=1 ⎣
⎜
⎝ g(h(x i ;ψ 1 ))(1− g(h(x i ;ψ 1 )))⎟⎠ ⎦ 

2 N 
i i 1 2 T∂ ln L(ϕ, (y, x))

= −∑ 
⎡
⎢
⎛
⎜⎜ 

y − g(h(x ;ψ )) ⎞
⎟⎟ 

2 

(g ′(h(x i ;ψ 1 )))  (  ∂h i )(  ∂h i ) 
⎤
⎥ 

∂ψ 1∂ψ 1 ′ i=1 ⎣⎢⎝ g(h(x i ;ψ 1 ))(1− g(h(x i ;ψ 1 )))⎠ ⎦⎥ 

N ⎡⎛ yi − g(h(x i ;ψ 1 )) ⎞ T 2 ⎤ 
+∑⎢⎜ ⎟(g ′(h(x i ;ψ 1 ))(  ∂h i )(  ∂h i ) + g(h(x i ;ψ 1 ))(∂ h i ))⎥. 

i=1 ⎣
⎜
⎝ g(h(x i ;ψ 1 ))(1− g(h(x i ;ψ 1 )))⎟⎠ ⎦ 

When h(x i ;η1 )  is nonlinear in the parameters estimation becomes more difficult, because 

the likelihood function may no longer be globally concave and many computer routines 

only estimate logistic regression models with index functions linear in the parameters 

(Train, 2003). In these cases, the researcher may need to write their own code and use a 

number of different algorithms to estimate the model. The asymptotic properties of 

consistency and asymptotic normality of the MLE estimates follow if certain regularity 

conditions are satisfied (see Gourieroux, 2000 and Spanos, 1999). 

5. Simulation 

A significant benefit of using the probabilistic reduction approach for developing 

the BRM is that it provides a mechanism for randomly generating the vector stochastic 

process, {(Yi , X i ), i = 1,..., N}  using the relationship given by equation (4) for simulations 

involving the BRM. The process involves performing two steps:  
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Step 1: Generate a realization of the stochastic process {Yi , i = 1,..., N}  using a binomial 

random number generator.  


Step 2: Using f (X i ;η1, j )  generate a realization of the vector stochastic process, 


{X i , i = 1,..., N}  using appropriate random number generators with the parameters given 


by η1, j =η1,0 when Yi = 0 and η1, j =η1,1 when Yi = 1. 


It should be noted that no a priori theoretical interpretation is imposed on the generation 


process, it is purely statistical in nature.6 Furthermore, the parameters ψ 1 can be easily 


determined from the parameters η1, j , via ψ 1 = G(η1,1,η1,0 )  when conducting simulations. 


To illustrate, consider the BRM given in Example 1. Let Yi ~ bin(0.6,1) and 

X i |Yi = j  have a conditional Weibull distribution with α0 = 1,α1 = 1.4 and γ = 3 . In 

this situation, the mapping ψ 1 = G(η1,1,η1,0 )  given in Example 1 gives β0 = −0.6040 , 

β1 = 0.6356 and γ = 3  for the parameters of the regression function given by equation 

(15). A Monte Carlo simulation using the above two-step procedure for randomly 

generating a binary choice process was used to examine the asymptotic properties of the 

parameters β0 , β1 and γ . A random sample of Yi ( p = 0.6 ) was generated 1000 times 

and then was used to generate X i  100 times using equation (14) for 

N = 50, 100, 250, 500, 1000, 2500 and 5000. For each run, the regression equation given 

by equation (15) was estimated using the log likelihood function given by equation (16) 

6 This generation procedure is in contrast to procedures assuming the existence of an unobservable latent 

stochastic process (see Train, 2003). 
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and a derivative-free algorithm developed by Nelder and Mead (1965).7 The results of the 

simulation are reported in Table 3. Given the convergence of the mean to the true value, 

the decreasing standard errors, and convergence of the skewness and kurtosis towards 0 

and 3 respectively, as N  increases, it would seem that there is evidence for concluding 

that β0 , β1 and γ  are consistent and asymptotically normal. 

6. Empirical Example 

Data was obtained from Al-Hmoud and Edwards (2004) from a study examining 

private sector participation in the water and sanitation sector of developing countries. 

Using there data a model was constructed examining this participation based on four 

explanatory factors. The dependent variable, total private investment (Y ), was binary, 

taking a value of ‘1’ if there was private investment in a given year and ‘0’ otherwise. Of 

the four explanatory variables used in the model, two were binary and two were 

continuous. The two binary variables were low renewable water resources ( X 3 ) and 

government effectiveness ( X 4 ). The two continuous variables were per capita GDP ( X 1 ) 

and percent urban population growth ( X 2 ). The dataset contained 149 observations for 

39 countries from 1996 to 2001, but data was not available for all countries for all years, 

resulting in an unbalanced panel (Al-Hmoud and Edwards, 2004). 

 Given that Y  is distributed Bernoulli, a BRM was chosen to model private sector 

participation in developing countries in the water and sanitation sector. To examine how 

7 It was found that this algorithm provided the best convergence properties for the given problem. A 

potential problem with index functions nonlinear in the parameters is the difficulty algorithms using 

derivatives and Hessians may have in finding an optimal solution due to potentially highly nonlinear or 

large relatively flat regions of the objective surface.  
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to proceed with model specification, the sample conditional correlation matrix given 

Y was estimated using the sample correlation coefficients of the residuals from 

appropriate regressions of the explanatory variables on Y .8 The sample conditional 

correlation matrix was: 

⎛ 1.00 − 0.45 0.11 0.54 ⎞
⎜ ⎟ 
⎜− 0.45 1.00 − 0.52 − 0.19⎟ 
⎜ 0.11 − 0.52 1.00 0.19 ⎟

, 
⎜ ⎟⎜ ⎟
⎝ 0.54 − 0.19 0.19 1.00 ⎠ 

which provided no determination on how to decompose f (X 1,i , X 2,i , X 3,i , X 4,i ;η1, j ) into 

independent components. Thus, sequential conditioning was used to give: 

f (X 1,i , X 2,i , X 3,i , X 4,i ;η1, j ) = f (X 1,i , X 2,i ;η1′ , j ,k ,l )⋅ f (X 3,i , X 4,i ;q j ), (17) 

where η1′ , j ,k ,l =η1 (Yi = j, X 3,i = k , X 4,i = l) and 

f (X 3,i , X 4,i ;q j ) = q ( 
j 
1
,
− 
0,

X 
0

3.i )(1−X 4,i )q Xj ,13,,i 0 
(1−X 4,i )q ( 

j 
1
,
− 
0,

X 
1

3,i )X 4,i q Xj ,13,.1 
i X 4,i , (18) 

where q j ,0,0 + q j ,1,0 + q j ,0,1 + q j ,1,1 = 1. That is, equation (18) is a multivariate 

Bernoulli( q j ) distribution conditional on Yi = j . 

After taking account of the heterogeneity in the continuous explanatory variables, 

it was assumed that X 1,i and X 2,i  were jointly distributed bivariate normal conditional on 

Yi = j, X 3,i = k and X 4,i = l for  j, k, l = 0,1, i.e. 

η′ 2π 2 

⎩ 2 
( − µ )  (  − µ 

⎭
, (19)f (X 1,i , X 2,i ; 1, j ,k ,l ) = ( )−1 Σ j ,k ,l 

−
1 

exp ⎧⎨−
1 X i j ,k ,l 

′Σ− 
j 
1
,k ,l X i j ,k ,l )⎫⎬

8 For the binary explanatory variables, appropriate logistic regression models were estimated, while for the 

continuous explanatory variables normal linear regression models were used. 
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where X i = (X 1,i , X 2,i )′ , µ j ,k ,l = (µ1, j ,k ,l , µ2, j ,k ,l )′  is a vector of conditional means, Σ j ,k ,l  is 

the conditional covariance matrix, and .  signifies the determinant operator. Given 

equation (18), this implies that: 

3,i 4,if (X 1,i , X 2,i , X 3,i , X 4,i ;η1, j ) = [q j ,0,0 ⋅ f (X 1,i , X 2,i ;η1′ , j ,0,0 )](1− X )(1− X ) ×


[q j ,1,0 ⋅ f (X 1,i , X 2,i ;η1′ , j ,1,0 )]X 3,i (1− X 4,i ) ×


3,i 4,i[q j ,0,1 ⋅ f (X 1,i , X 2,i ;η1′ , j ,0,1 )](1− X )X × 

′ X 3,i X 4,i[q j ,1,1 ⋅ f (X 1,i , X 2,i ;η1, j ,1,1 )] . (20) 

Plugging equation (20) into h(x i ;η1 ) and computing ψ 1 = G(η1, j ) : 
2 2h(x i ;ψ 1 ) = β0 + β1 x1,i + β 2 x2,i + β3 x3,i + β 4 x4,i + β5 x1,i + β6 x1,i x2,i + β7 x2,i + 

β8 x1,i x3,i + β9 x2,i x3,i + β10 x1,i x4,i + β11 x2,i x4,i + β12 x3,i x4,i + β13 x1
2
,i x3,i + 

β14 x1,i x2,i x3,i + β15 x2
2
,i x3,i + β16 x1

2
,i x4 + β17 x1,i x2,i x4,i + β18 x2

2
,i x4,i + 

β19 x1,i x3,i x4,i + β 20 x2,i x3,i x4,i + β 21 x1
2
,i x3,i x4,i + β 22 x1,i x2,i x3,i x4,i + 

β 23 x2
2
,i x3,i x4,i , (21) 

which when plugged into equation (9) provides an estimable BRM. If Σ j ,k ,l = Σ , then all 

the terms involving x1
2
,i , x1,i x2,i and x2

2
,i would disappear, but this was not the case.9 

Since the index function given by equation (21) is linear in the parameters, 

standard computer software packages with logistic regression models, were used to 

estimate the corresponding BRM. Estimation results for the logistic regression model 

using equation (21) and a more common specification found in the applied literature: 

h(x i ;ψ 1 ) = β0 + β1 x1,i + β 2 x2,i + β3 x3,i + β 4 x4,i , (22) 

  Results of these analyses using the data are available from the authors upon request. 
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are presented in Table 4. Misspecification testing results for the BRM using equation (21) 

indicated the presence of heterogeneity across years, so fixed effects (using dummy 

variables) for the years 1996-1999 were incorporated into both models.10 

The two models were compared using a likelihood ratio test, with the null 

hypothesis being that the more common specification of the logit model using equation 

(22) with fixed effects across time was correct. The computed likelihood ratio test 

statistic was 69.3229 with an associated p-value of 0.0000, indicating that the more 

common formulation of the logistic regression model is misspecified. Further evidence 

that the BRM using equation (22) was superior to the more common specification of the 

logistic regression model is given by the higher R2 values, higher within-sample 

prediction and lower mean square error.11 

7. Conclusion 

The latent variable approach and the transformational approach for specifying 

statistical models with binary dependent variables can result in statistical 

misspecification. Both approaches do not explicitly recognize that the functional form of 

E(Yi | X i = x i ) depends on f (X i | Yi = j;η1 )  and in turn the existence of f (Yi , X i ;ϕ). 

Using the probabilistic reduction approach and results derived by Kay and Little (1987), 

10 A likelihood ratio test was conducted in a Fisher testing framework to examine the BRM without fixed 

effects across time (see Spanos, 1999). The null hypothesis was no fixed effects and the likelihood test 

statistic was 34.1369 with an association p-value of 0.00001, indicating no support for the null hypothesis. 

Heterogeneity across regions was tested as well, but no evidence of this type of heterogeneity was found.  

11 Additional misspecification tests for functional form and dependence indicated that the functional form 

was not misspecified, but there may exist temporal and/or spatial dependence in the data. These tests and 

results are available from the authors upon request and will be explored further in a future paper.  
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this relationship is formally defined to derive the Bernoulli Regression Model. While 

specification of these models can be difficult at times, examination of the sample 

conditional correlation matrix of the explanatory variables given Yi can help determine 

plausible decompositions of f (X i | Yi = j;η1 )  to arrive at operational BRMs. 

Furthermore, the model assumptions shown in Table 1 can be tested to verify that the 

BRM obtained is statistically adequate, thereby allowing the model to provide reliable 

statistical inferences and predictions. The theoretical and empirical examples provide 

evidence that the common use of logit and probit models with linear index functions both 

in the parameters and variables are suspect when the underlying model assumptions have 

not been verified. 

The Bernoulli Regression Model can provide a parsimonious description of the 

probabilistic structure of conditional binary choice process being examined and imposes 

no a priori theoretical or ad hoc restrictions (or assumptions) upon the model, thereby 

providing a theory-free statistical model of the conditional binary choice process being 

examined. As noted by Spanos (1995), this freedom allows the modeler to conduct 

statistical inferences (if the statistical assumptions made about the underlying stochastic 

process are appropriate) that can be used to examine if the theory in question can account 

for the systematic information in the observed data.  
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Table 1: Bernoulli Regression Model 
SGM: Yi = g(x i ;ψ 1 )+ ui , i = 1,..., N , 

where (i) 

1− g(X i ;ψ 1 ) − g(X i ;ψ 1 )ui 

g(X i ;ψ 1 ) 1− g(X i ;ψ 1 )f (ui ) 

(ii) ( ) = 0 ; andE ui 

(iii) Var(ui ) = g(X i ;ψ 1 )(1− g(X i ,ψ 1 )) . 

Distributional: 

Assumptions 

( )( ,1),~| 1i ψiii bin gY xxX = , (conditional Bernoulli). 

Functional Form: ( ) ( ) ( ){ }[ ]11 ;exp1;| ηψ iiiii hgE Y xxxX −= +== , where 

( ) ( ) 
( ) κ

η 

η
η +⎥ 

⎦ 

⎤ 
⎢ 
⎣ 

⎡ 
= 

= 
= 

1 

1 
1 0;| 

1;|
ln; 

ii 

ii 
i Yf 

Yf
h 

X 
X 

x  and ( )11 ηψ G= . 

Heteroskedasticity: ( ) ( ) ( )( )11 ;1;| ψψ iiiii ggVar Y xxxX −== . 

Homogeneity: ( )11 ηψ G=  is not a function of Ni 1,...,= . 

Independence: { N}iY iii 1,...,,| == xX  is an independent stochastic process. 
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Table 2: Specification of g(xi ;η1 )with one ex planatory variable and conditional distribution, f (X i ;η1, j ), for j = 0,1. 
Distribution of f (X i ;η1, j )= 2 g(xi ;ψ 1 ) = 

X i  given Yi 

Beta1 
X α 

i
j −1 (1− X i )γ j −1 

, where 
[1+ exp{β 0 + β1 ln(xi )+ β 2 ln(1− xi )}]−1 , where 

B[α j ,γ j ] ⎡ ⎛B[α 0 ,γ 0 ]⎞⎤ 
(α j ,γ j )∈R 2 

+ and 0 ≤ X i ≤1.	
β 0 = ⎢

⎢⎣
κ + ln⎜⎜

⎝ B[α1 ,γ 1 ] ⎟
⎟
⎠
⎥
⎥⎦ 
, β1 = (α1 −α 0 )and β 2 = (γ 1 −γ 0 ). 

−1Binomial1	
⎛
⎜

n ⎞
⎟θ X i (1−θ )n−X i , where [1+ exp{− β 0 − β1 xi }] , where 

⎜ ⎟ j j
⎝ X i ⎠	

β = 
⎡
⎢κ + n ln⎜

⎛ 1−θ1 ⎟
⎞⎤
⎥ and β = ln⎜

⎛ θ1 ⎟
⎞
− ln⎜

⎛ 1−θ1 ⎟
⎞ 
.0 < θ j <1, X i = 0,1and n =1,2,3,...	 0 

⎣⎢ 
⎜
⎝1−θ 0 

⎟
⎠⎦⎥ 

1 ⎜
⎝θ 0 

⎟
⎠ 

⎜
⎝1−θ 0 

⎟
⎠ 

Chi-square 

⎭ 
⎬ 
⎫ 

⎩ 
⎨ 
⎧
− 

⎥ 
⎥ 
⎦ 

⎤ 

⎢ 
⎢ 
⎣ 

⎡ 
Γ 

−− 

2
exp 

2 

2 2 
2 

2 
i 

v 

i 
j 

v 

X
X 

v 

j 
j 

, where 

.1,2,3,... and ∈ + = Rxv 
0β 

{ }[ ] 1 
10exp1 −−−+ xiβ β , where 

( )  
2 

and 

2 

2
lnln 2 

2 
01 

1 
1 

0 

10 vv 
v 

v 
vv − 

= 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

⎦ 

⎤ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎣ 

⎡ 

⎟
⎟ 
⎟ 
⎟ 
⎟ 

⎠ 

⎞ 

⎜
⎜ 
⎜ 
⎜ 
⎜ 

⎝ 

⎛ 

⎥
⎦ 

⎤ 
⎢
⎣ 

⎡
Γ 

⎥
⎦ 

⎤ 
⎢
⎣ 

⎡
Γ 

+⎟⎟
⎠ 

⎞ 
⎜⎜
⎝ 

⎛ − 
+= βκ . 

Exponential 

Gamma1 

⎪⎭ 

⎪
⎬ 
⎫ 

⎪⎩ 

⎪
⎨ 
⎧ 
− 

j 

i 

j 

X 
θθ

exp 1 , where 

.and ++ ∈∈ RR ij Xθ 

[ ]  ⎪⎭ 

⎪
⎬ 
⎫ 

⎪⎩ 

⎪
⎨ 
⎧ 
−⎟ 

⎟ 
⎠ 

⎞ 
⎜ 
⎜ 
⎝ 

⎛ 

Γ 

− 

j 
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 Table 2 continued. Logarithmic ⎛θ X i ⎞ [1+ exp{− β − β xi }]−1 , where 
α ⎜ j ⎟ , where 0 1 

j ⎜
⎝ 

X i 
⎟
⎠ β 0 = 

⎡
⎢κ + ln

⎛
⎜⎜
α1 ⎞⎟⎟

⎤
⎥ and β1 = ln

⎛
⎜⎜
θ1 ⎞⎟⎟. 

α j = −[ln(1−θ j )]−1 , 0 < θ j <1and Xi =1,2,3,... ⎢⎣ ⎝α 0 ⎠⎥⎦ ⎝θ0 ⎠ 

Log-Normal 
⋅ exp 

⎧
⎨−

( (X )− 
2

2 ⎫
⎬ , where 

[ + { 
2 

+ β 

2

ln(x ) + β (ln( ) 2 −1 
1 1 ⎪ ln i µ j ) ⎪ 1 exp β0 1 i 2 xi ) }] , where 

X i σ j 2π	 ⎪⎩ 2σ j ⎪⎭ β =
⎡
⎢κ + ln

⎛
⎜σ0 ⎞⎟ 

⎛
⎜ µ0 −

µ1 ⎞⎟
⎤
⎥, β = 

⎛
⎜ µ1 −

µ0 ⎞⎟ and β =
⎛
⎜ 1 

− 
1 ⎞

⎟. 
2

0 
⎢⎣ ⎝

⎜ σ1 ⎠
⎟ +

⎝
⎜ 2σ0

2 2σ1
2 
⎠
⎟⎥⎦ 

1 
⎝
⎜σ1

2 σ0
2 
⎠
⎟ 2 

⎝
⎜ 2σ0

2 2σ1
2 
⎠
⎟

µ j ∈R,σ j ∈R + and X i ∈R. 

2 −1Normal1 
1 exp 

⎧⎪− 
1 (X − µ )2 

⎫⎪ , where 
[1+ exp{β0 + β1xi + β2 xi }] , where 

σ j π ⎪
⎨ 

2σ 2 
j

i j 
⎪
⎬ 

⎡ ⎛σ ⎞ ⎛ µ 2 µ 2 ⎞⎤ ⎛ µ µ ⎞ ⎛ 1 1 ⎞ 

µ j ∈R 
⎩ 

,σ 2 
j ∈R + and X i ∈

⎭ 

R.	
β0 = ⎢

⎢⎣
κ + ln⎜⎜

⎝ σ1

0 ⎟⎟
⎠ 
+ ⎜⎜
⎝ 2σ 

0

0
2 − 

2σ 
1

1
2 
⎟
⎟
⎠
⎥
⎥⎦ 
, β1 = ⎜⎜

⎝σ1

1
2 − σ0

0
2 
⎟
⎟
⎠ 

and β2 = ⎜⎜
⎝ 2σ0

2 − 
2σ1

2 
⎟
⎟
⎠ 
. 

θ θ j −θ j −1	 ]−1Pareto 
j x0 X i , where [1+ exp{− β 0 − β1 ln(xi )} , where 

θ j ∈R + , x0 > 0 and X i ≥ x0 . ⎡ ⎛
⎜ θ1 ⎞⎟ ( − ) ( )  

⎤ 
and β = (θ −θ )β 0 = ⎢κ + ln⎜ ⎟ + θ1 θ0 ln x0 ⎥ 1 0 1. 

⎣ ⎝ 0 ⎠ ⎦⎢ θ	 ⎥ 
X	 −Poisson1 

e −θ jθ j
i 

, where 
[1+ exp{− β 0 − β1 xi }] 1 , where 

X i ! β 0 = [κ +θ0 −θ ` ]and β1 = ln
⎛
⎜ θ1 ⎞⎟.

θ j > 0 and X i =1,2,3,... ⎝
⎜θ0 ⎠

⎟

1 Source: Kay and Little (1987). 

2 Source: Spanos (1999). B[ ]represents the beta function and Γ[ ] represents the gamma function. 
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Table 3: Monte Carlo Simulation Results for Example 1 
Parameter Number of Mean Standard Skewness Kurtosis Minimum Maximum 

Observations (N) Deviation 
True Value = -0.6040 

N = 50 -1.3818 2.8420 -6.2629 51.0895 -30.5758 0.8559 

N = 100 -1.1167 2.2610 -7.7925 78.1452 -29.5084 0.4964 

N = 250 -0.6592 0.4495 -1.9983 11.9573 -4.3456 0.2839 
β0 

N = 500 -0.6179 0.2515 -0.5588 3.8758 -1.6702 0.0973 

N = 1000 -0.6212 0.1785 -0.5503 3.7557 -1.4291 -0.1987 

N = 2500 -0.6101 0.1131 -0.2670 2.9358 -0.9543 -0.2819 

N = 5000 -0.6085 0.0789 -0.0278 3.1540 -0.9131 -0.3112 

True Value = 0.6356 

N = 50 1.3637 2.9204 6.0719 48.3619 0.0000 31.1302 

β1 N = 100 1.1422 2.3355 7.4744 72.7571 0.0001 29.9172 

N = 250 0.6832 0.4959 2.2396 13.0258 0.0005 4.8237 

N = 500 0.6435 0.2791 0.8397 4.5379 0.0514 2.0420 
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Table 3 continued. 
Parameter Number of 

Observations (N) 
N = 1000 

Mean 

0.6506 

Standard 
Deviation 

0.1992 

Skewness 

0.7351 

Kurtosis 

4.1469 

Minimum 

0.1581 

Maximum 

1.6016 

β1 N = 2500 0.6421 0.1269 0.3445 2.9474 0.2739 1.0701 

N = 5000 0.6376 0.0895 0.0660 2.9984 0.3223 0.9763 

True Value = 3.0 

N = 50 4.6698 4.3463 2.4179 11.6444 -6.6156 36.2235 

N = 100 4.1471 3.5111 2.6295 13.0030 0.0824 28.0070 

γ 
N = 250 

N = 500 

3.5300 

3.2363 

1.7017 

0.9155 

2.5781 

1.2591 

16.4192 

6.8497 

0.4513 

1.1333 

17.7591 

9.1500 

N = 1000 3.0825 0.5811 0.6526 4.3230 1.6281 6.1177 

N = 2500 3.0361 0.3655 0.2861 2.9450 2.1125 4.2341 

N = 5000 3.0250 0.2609 0.3726 3.2808 2.2855 4.1462 

31 




--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

Table 4: Estimation Results for the Empirical BRM and Traditional Logit Models 
BRM using Equation Traditional Logit using 

Variable (21) 
Coefficient Estimate 

Equation (22) 
Coefficient Estimate 

(Standard Error)1 (Standard Error)1 

Intercept 	-24.6608 
(17.2947) 

Dummy 1996 -5.8496 
(1.3295) 

Dummy 1997 -3.8065 
(1.0811) 

Dummy 1998 -2.8882 
(1.0222) 

Dummy 1999 -1.9274 
(0.9624) 

X 1,i 0.0041 
(0.0060) 

X 2,i 12.7504 
(7.8883) 

X 3,i 24.2342 
(18.5156) 

X 4,i -27.9374 
(75.4572) 

X 1
2
,i 

0.0000 
(0.0000) 

X 1,i X 2,i -0.0019 
(0.0014) 

X 2
2
,i 

-1.3945 
(0.8552) 

X 1,i X 3,i	 -0.0067 
(0.0097) 

X 2,i X 3,i	 -11.5153 
(8.0715) 

X 1,i X 4,i 0.0024 
(0.0255) 

X 2,i X 4,i 9.4477 
(32.8429) 

X 3,i X 4,i 14.8636 
(76.3755) 

X 2 
i X	 0.0000

1, 3,i 
(0.0000) 

X 1,i X 2,i X 3,i 0.0010 
(0.0016) 

X 2
2
,i X 3,i	

1.6699 
(0.9339) 

-1.6690 
(0.7677) 
-2.5791 
(0.6876) 
-1.9291 
(0.6536) 
-1.7267 
(0.6620) 
-1.0273 
(0.6615) 
0.0004 

(0.0001) 
0.4738 

(0.1436) 
1.0485 

(0.4706) 
0.5495 

(0.4884) 
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--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

Table 4 continued. 
BRM using Equation Traditional Logit using 

Variable (21) 
Coefficient Estimate 

Equation (22) 
Coefficient Estimate 

(Standard Error)1 (Standard Error)1 

X 2 
i X	 -0.0000

1, 4,i 
(0.0000) 

X 1,i X 2,i X 4,i 0.0022 
(0.0058) 

X 2 
i X -0.9815

2, 4,i 
(3.5851) 

X 1,i X 3,i X 4,i 0.0053 
(0.0268) 

X 2,i X 3,i X 4,i -0.5565 
(33.2265) 

X 1
2
,i X 3,i X 4,i	

-0.0000 
(0.0000) 

X 1,i X 2,i X 3,i X 4,i	 -0.0033 
(0.0059) 

X 2
2
,i X 3,i X 4,i	

-0.5530 
(3.6362) 

Other Statistics 

Log-Likelihood -45.3512 -80.0127 

McFadden’s Pseudo R2 0.5466 0.2001 

Estrella’s R2 0.6543 0.2590 

Percent Correctly Predicted 87.25 67.79 

Mean Square Error 3.7833 5.5505 

1 The standard errors are calculated using the estimate of the asymptotic information 

matrix. 
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Figure 1: Simulated Density Plot for a Bernoulli Regression Model with One Explanatory 

Variable Conditionally Distributed Normal Given Yi = j . 
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